Rapid Measurement of Molecular Transport and Interaction inside Living Cells Using Single Plane Illumination
نویسندگان
چکیده
The ability to measure biomolecular dynamics within cells and tissues is very important to understand fundamental physiological processes including cell adhesion, signalling, movement, division or metabolism. Usually, such information is obtained using particle tracking methods or single point fluctuation spectroscopy. We show that image mean square displacement analysis, applied to single plane illumination microscopy data, is a faster and more efficient way of unravelling rapid, three-dimensional molecular transport and interaction within living cells. From a stack of camera images recorded in seconds, the type of dynamics such as free diffusion, flow or binding can be identified and quantified without being limited by current camera frame rates. Also, light exposure levels are very low and the image mean square displacement method does not require calibration of the microscope point spread function. To demonstrate the advantages of our approach, we quantified the dynamics of several different proteins in the cyto- and nucleoplasm of living cells. For example, from a single measurement, we were able to determine the diffusion coefficient of free clathrin molecules as well as the transport velocity of clathrin-coated vesicles involved in endocytosis. Used in conjunction with dual view detection, we further show how protein-protein interactions can be quantified.
منابع مشابه
Transport of a Liquid Water-Methanol Mixture in a Single Wall Carbon Nanotube
In this work, a molecular dynamics simulation of the transport of water - methanol mixture through the single wall carbon nanotube (SWCNT) is reported. Methanol and water are selected as fluid molecules since water represents a strongly polar molecule while methanol is as an intermediate between polar and strongly polar molecules. Some physical properties of the methanol-water mixture such as r...
متن کاملInvestigating the Ibuprofen Chiral Forms Interactions with Single Wall Carbon Nanotube
The aim of this study is investigating the transport mechanism of ibuprofen chiral isomers inside single wall carbon nano tube (SWCNT) using mathematical modeling. To achieve this goal, molecular dynamics simulation has been performed to evaluate the interactions of ibuprofen isomers with SWCNT in an aqueous solution. Results show that both chiral forms of ibuprofen molecules enter and remain i...
متن کاملThe study of dose gamma rays of 192Ir source on DNA single strand break (SSB) and DNA double strand break (DSB) in soft tissue phantom
Introduction: Passage of ionizing radiation through the organs of living creatures develops clusters of damaged nucleotides inside the DNA rounds. 192Ir Gamma source is one of the most widely used sources in brachytherapy of cervical and prostate cancer. Thus, in this research, we investigated the flux of photons and its resulting secondary electrons, the single-strand break (S...
متن کاملMolecular Dynamics Simulation of Water in Single WallCarbon Nanotube
The overall aim of this study is to calculate some water properties in the single wall carbon naotubes (SWCNT) and compare them to the bulk water properties to investigate the deviation of water properties inside the SWCNT from those in the bulk. Here some physical and transport properties of water molecules in the single wall carbon nanotube were reported by performing molecular dynamics (MD) ...
متن کاملO-4: The Interaction of Bioactive Glass Nanoparticles with Mesenchymal Stem Cells In Vitro
Background: Bioactive glass (BG) nanoparticles are amongst the most promising class of biomaterials for hard tissue regeneration because of their distinctive properties of rapid bone bonding, controlled biodegradability and their ability to stimulate new bone growth. Despite the vast interest in BG scaffolds in medical applications, the synthesis of bioactive glass nanoparticles is still facing...
متن کامل